Quad Line Receiver AS10515F16MIL

Austin Semiconductor, Inc.

Quad Line Receiver

AVAILABLE AS MILITARY SPECIFICATIONS

- Military Equivalent Screening - 883 1.2.2

GENERAL DESCRIPTION

The AS10515F16MIL is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply $\left(\mathrm{V}_{\mathrm{BB}}\right)$ is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the AS10515F16MIL with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 9) to prevent upsetting the current source bias network.

- $\mathrm{P}_{\mathrm{D}}=150 \mathrm{~mW}$ Max/Pkg (No Load)
- $\mathrm{t}_{\mathrm{pd}}=2.0 \mathrm{~ns}$ typ
- $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}$ type $(20 \%-80 \%)$

PIN ASSIGNMENTS

FUNCTION FLATS | BURN-IN |
| :---: |
| (CONDITION C) |

$\mathrm{V}_{\mathrm{CC} 1}$	5	GND
$\mathrm{A}_{\text {OUT }}$	6	51Ω to V_{T}
$\mathrm{B}_{\text {OUT }}$	7	51Ω to V_{T}
$\mathrm{A}_{\text {IN }}$ \}	8	$V_{B B}$
$\mathrm{A}_{\text {IN }}$	9	GND
$\mathrm{B}_{\text {IN }}$	10	GND
$\mathrm{B}_{\text {IN }} \backslash$	11	$V_{B B}$
V_{EE}	12	$V_{\text {EE }}$
$V_{B B}$	13	$V_{B B}$
$\mathrm{CIN}^{\text {l }}$	14	$V_{B B}$
$\mathrm{C}_{\text {IN }}$	15	GND
$\mathrm{D}_{\text {IN }}$	16	GND
$\mathrm{D}_{\text {IN }}$ \}	1	$V_{B B}$
Cout	2	51Ω to V_{T}
$\mathrm{D}_{\text {OUT }}$	3	51Ω to V_{T}
$\mathrm{V}_{\mathrm{CC} 2}$	4	GND

\author{

PIN ASSIGNMENT
 (Top View)
 16-Pin FlatPack (F)
 | $\mathrm{D}_{\text {IN }} 1$ | |
| :---: | :---: |
| $\mathrm{C}_{\text {OUT }} \mathrm{IN}^{\text {a }}$ | |
| $\mathrm{D}_{\text {OUT }} 3$ | 14 |
| $\mathrm{V}_{\mathrm{CC} 2} 4$ | 13 |
| $\mathrm{V}_{\mathrm{CC} 1} 5$ | 12 |
| $\mathrm{A}_{\text {out }} 6$ | 11 |
| $\mathrm{B}_{\text {out }} \mathrm{Cl}^{7}$ | 10 |
| $\mathrm{A}_{\text {IN }}$ | |

BURN-IN CONDITIONS:

$\mathrm{V}_{\mathrm{TT}}=-2.0 \mathrm{~V}$ MAX/ -2.2 V MIN
$\mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V}$ MAX/ -5.2V MIN
$\mathrm{V}_{\mathrm{BB}}=$ All pins designated for V_{BB} must be tied together, no external voltage applied.

NOTES

1. V_{BB} to be used to supply bias to the AS10515F16MIL only and bypassed (when used) with $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor.
2. When the input pin with the bubble goes positive, the output goes negative.

For more products and information please visit our web site at www.austinsemiconductor.com

Quad Line Receiver AS10515F16MIL

Austin Semiconductor, Inc.

Puse Generator must be capable of rise and fall times of $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$.

NOTES:

Channel B

$\mathrm{R}_{1}=50 \Omega$ resistor in series with a 50Ω coax cable constituting the 100Ω load.

1. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$ measured at $(20 \%-80 \%)$

$$
\mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V} \pm 0.005 \mathrm{~V}
$$

2. $\mathrm{P}_{\mathrm{w}} \geq 20 \mathrm{~ns}$
3. $\mathrm{P}_{\mathrm{RF}}=1.0 \mathrm{MHz}$
4. $\mathrm{R}_{1}=50 \Omega$ resistor in series with 50Ω coax constituting the 100Ω load.
5. Unused outputs should be loaded 100Ω to ground.
6. 2:1 divider may be used.

Figure 1. Switching Test Circuit and Waveforms

QUIESCENT LIMITTABLE*

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100Ω resistor to -2.0 volts.

Test Temperature	Test Voltage Values (Volts)								
	$\mathbf{V}_{\mathbf{I H} 1}$	$\mathbf{V}_{\mathbf{I L} 1}$	$\mathbf{V}_{\mathbf{I H} 2}$	$\mathbf{V}_{\mathbf{I L} 2}$	$\mathbf{P}_{\mathbf{S} 1}$	$\mathbf{P}_{\mathbf{S} 2}$	$\mathbf{V}_{\mathbf{E E L}}$	$\mathbf{V}_{\mathbf{E E}}$	$\mathbf{V}_{\mathbf{C B}}$
	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-3.2	-5.2	-5.2
$\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-3.2	-5.2	-5.2
$\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-3.2	-5.2	-5.2

ω

SYMBOL	PARAMETER Functional Parameters:	LIMITS						UNITS	TEST VOLTAGE APPLIED TO PINS BELOW:							
		+ $25^{\circ} \mathrm{C}$		$+125^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$			Pinouts referenced are for F package, check Pin Assignments $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$, Output Load $=100 \Omega$ to -2.0 V							
		Subgroup 1		Subgroup 2		Subgroup 3										
		MIN	MAX	MIN	MAX	MIN	MAX		$\mathrm{V}_{\mathrm{IH} 1}$	$\mathrm{V}_{\text {IL1 }}$	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\text {IL2 }}$	V_{EE}	V_{Cc}	***	P.U.T.
V_{OH}	High Output Voltage	-0.93	-0.78	-0.825	-0.63	-1.08	-0.88	V	5, 6, 11, 12	4, 7, 10, 13			8	1,16	$\begin{gathered} 4-7 \\ 11-13 \end{gathered}$	2, 3,14, 15
V_{OL}	Low Output Voltage	-1.85	-1.62	-1.82	-1.545	-1.92	-1.655	V	4, 7, 10, 13	5, 6, 11, 12			8	1,16	$\begin{gathered} 4-7 \\ 11-13 \end{gathered}$	2, 3,14, 15
$\mathrm{V}_{\mathrm{OH} 1}$	High Output Voltage	-0.95	-0.78	-0.845	-0.63	-1.10	-0.88	V			5, 6, 11, 12	4, 7, 10, 13	8	1,16	$\begin{gathered} 4-7 \\ 11-13 \end{gathered}$	2, 3,14, 15
$\mathrm{V}_{\text {OL1 }}$	Low Output Voltage	-1.85	-1.60	-1.82	-1.525	-1.92	-1.635	V			4, 7, 10, 13	5, 6, 11, 12	8	1,16	$\begin{gathered} 4-7 \\ 11-13 \end{gathered}$	2, 3,14, 15
${ }^{* *} \mathrm{~V}_{\mathrm{BB}}$	Reference Voltage	-1.35	-1.23	-1.24	-1.12	-1.44	-1.32	V					8	1,16	$\begin{gathered} 5,6 \\ 11,12 \end{gathered}$	9
$I_{\text {EE }}$	Power Supply Current	-26		-29		-29		mA					8	1,16	$\begin{gathered} 5,6 \\ 11,12 \\ \hline \end{gathered}$	8
$\mathrm{IIH}^{\text {H }}$	Input Current High		95		165		165	$\mu \mathrm{A}$	$\begin{gathered} 4-7 \\ 10-13 \end{gathered}$				8	1,16		$\begin{gathered} 4-7 \\ 10-13 \end{gathered}$
$\mathrm{I}_{\mathrm{CBO}}$	Input Leakage Current	-1.0		-1.0		-1.5		$\mu \mathrm{A}$					8	1,16	$\begin{gathered} 4-7 \\ 10-13 \end{gathered}$	$\begin{gathered} 4-7 \\ 10-13 \end{gathered}$

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100Ω resistor to -2.0 volts.

QUIESCENT LIMITTABLE*

Test Temperature	Test Voltage Values (Volts)								
	$\mathbf{V}_{\mathbf{I H} 1}$	$\mathbf{V}_{\mathbf{I L} 1}$	$\mathbf{V}_{\mathbf{I H} 2}$	$\mathbf{V}_{\mathbf{I L} 2}$	$\mathbf{P}_{\mathbf{S} 1}$	$\mathbf{P}_{\mathbf{S} 2}$	$\mathbf{V}_{\mathbf{E E L}}$	$\mathbf{V}_{\mathbf{E E}}$	$\mathbf{V}_{\mathbf{C B}}$
	-0.78	-1.85	-1.105	-1.475	+1.11	+0.31	-3.2	-5.2	-5.2
$\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-0.63	-1.82	-1.000	-1.400	+1.24	+0.36	-3.2	-5.2	-5.2
$\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	-0.88	-1.92	-1.255	-1.510	+1.01	+0.28	-3.2	-5.2	-5.2

